
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
H. Ghodselahi, Y. Maus January 23, 2017

Algorithm Theory, Winter Term 2016/17

Problem Set 6 - Solution

Exercise 1: Free Vacation! (12+3 points)

Remark: This is a previous exam question.

A high school class is made an interesting offer by a reality TV show in which couples of students (one
female and one male student) get a free vacation trip to an exciting location. This class consists of

• n boys B “ tb1, . . . , bnu and

• n girls G “ tg1, . . . , gnu.

There are n different locations L “ t`1, . . . , `nu for the students to choose from. The girls are not
picky about the destinations, but each girl g is only willing to partner up with an individual subset
Bg Ď B of all available boys. The boys on the other hand do not care that much about with whom
they go on vacation, but they care about the location; each boy b has an individual subset Lb Ď L of
locations it is willing to visit.

a) Is it possible that everyone can go on a free vacation? Devise an algorithm that answers this
question.

b) What is the time complexity of your algorithm if you assume that each girl is willing to partner
up with at most

?
n different boys and if you assume that each boy is willing to to visit at most

?
n different locations?

Solution:

a) We first construct the flow network. We add a node s as source, a node t as sink, a set G of n
nodes where each node corresponds to one girl, a set B of 2n nodes, that is two nodes for each boy,
and finally a set L of n nodes where each node corresponds to one location. We connect s to all
nodes in G. Further the node t is connected to all nodes in L. For each boy bi we have two nodes
bini and bouti . We connect every incoming node with every outgoint node, that is, we introduce the
edges pbini , b

out
i q for i “ 1, . . . n. Each girl gi where 1 ď i ď n is willing to partner up with the boys

in Bgi Ď B. Hence for all gi we add edges pgi, b
inq for all b P Bgi . This induces the set of edges E1

as you can see in Figure 1 as black box.

To be done with constructing the flow network, for every boy bj where 1 ď j ď n who is willing to
go to locations in Lbj Ď L we add the edges need to connect the node boutj with the nodes in Lbj ,
that is, we add edges pboutj , lq for all l P Lbj . This induces the edges E2 as it is shown in Figure 1
as black box.

We set the capacities of all edges to 1. We run the Ford-Fulkerson algorithm to find a maximum
s´ t-flow in the constructed network. It is possible that everyone can go on a free vacation if and
only if the algorithm returns a maximum flow of value n. A quick proof for that:
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Figure 1: Network Flow

• maximum flow with value n ñ free vacation:

Let f be a maximum flow of value n. Then there are n (edge disjoint) augmenting paths
(Menger’s Theorem) ps, g, b, l, tq with g P G, b P B, l P L. Because every girl node has only
one incoming edge, every location node has only one outgoing edge and we split the nodes for
the boys into two nodes (similar to finding vertex disjoint paths), we ensure that every girl,
boy and location occur in exactly one of these paths (essential point!). Thus the paths yield
a valid matching of all boys, girls and locations and everyone can go to a free vacation.

• Free vacation for everyone ñ maximum flow with value n:

If everyone can go on a free vacation there are matchings tpg, b, lqu such that every girl, boy
and location occurs in exactly one triple matching. This leads to n edge disjoint paths, each
with bottleneck 1, from s to t (similar as above). Thus there is a maximum flow with value
n.

b) Basically the running time of Ford-Fulkerson is Op|E|Cq where |E| is the total number of edges
and C is maximum flow value. The total number of edges in our network flow is 2np1`

?
nq since

each girl is willing to partner up with at most
?
n boys and every boy is willing to go to at most

?
n locations. Because the cut ptsu, V zttuq has capacity n, the maximum possible flow which we

can push from s to t is bounded by n. Thus the running time is Opn2
?
nq.
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Exercise 2: Ford Fulkerson revisited.(10 points)

Show that the below statement is correct or prove that it does not hold.

Often the Ford Fulkerson algorithm needs many augmenting paths. If the algorithm always chooses
the ’correct’ augmenting paths it never has to choose more than |E| paths.

Solution:

Let G “ pV,Eq be a flow network with max flow f : E Ñ R`. In the following we show the existence
of at most |E| augmenting paths which form the max flow f . To construct these paths we make use
of the max flow f . Thus our approach is not helpful for an algorithm because it first has to know the
max flow f before constructing the augmenting paths.

Construction of One Augmenting Path: Let Gpfq “ pV,Ef q be the graph induced by f where
Ef “ td P E | fpdq ą 0u. If |f | “ 0 the graph Gpfq does not have any edges and the claim holds. If
|f | ą 0 then there is a path from s to t in Gpfq. Pick any such path and denote it by P . Then there
is some edge e on the path with fpeq “ mintfpdq|d is edge on P u. Let the first augmenting path be
P with value fpeq.

Iterating the Construction: Redefine the flow network by reducing all capacities of G on the path
P by fpeq. This way one obtains a new flow network with max flow |f |´fpeq which is met by a flow f 1

which we define as the flow f reduced by the first augmenting path. To obtain the second augmenting
path we again look at the induced graph Gpf 1q and proceed as before. The crucial observation is that
Gpf 1q lost edge e (and we are done if Gpf 1q does not have any edge). Thus we can only repeat this
procedure at most |E| times and in the end all |E| augmenting paths combined form the max flow of
the original flow network.
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Exercise 3: Large Chromatic Number without Cliques. (15 points)

A c-coloring of a graph G “ pV,Eq is a function φ : V Ñ t1, . . . , cu such that any two neighboring
nodes have different colors, i.e., for each tu, vu P E φpuq ‰ φpvq. The chromatic number χpGq of a
graph G is the smallest integer c such that a c-coloring of G exists, e.g., the chromatic number of an
k node clique is k. In the following we want to use probability theory to show that not only cliques
imply large chromatic number, in particular we want to show the following:

For any k and l there is a graph with chromatic number greater than k and no cycle shorter than l.

In the following consider a (random) graph Gn,p on n nodes. Each (possible) edge tu, vu, u, v P V

exists with probability p “ n
1
2l
´1.

1) (1 point) An independent set I of a graph G is a collection of nodes such that GrIs does not have
any edge. The independence number αpGq of a graph denotes the size of the largest independent
set.

Explain why χpGq ě |V pGq|{αpGq holds.

2) (5 points) Show that for a “ r3p lnns we have

PrrαpGq ě as ÝÑnÑ8 0.

Hint: There are
`

n
a

˘

choices for the nodes of an independent set of size a. What is the probability
that a specific nodes form an independent set? Also use the linearity of expectation!

3) (5 points) Let X be the number of cycles of length at most l. Show that its expectation ErXs
can be upper bounded by n

4 for large n.

Hint: What is the probability that j specific nodes form a cycle? How many choices of nodes which
can possibly form a cycle of length less than l are there? Again, use the linearity of expectation.

4) (3 points) From 2) and 3) we can deduce that PrrX ě n{2 or αpGq ě as ă 1 holds. This means
that there exists a graph H with n nodes where the number of cycles with length less than l is less
than n{2 and the independence number is smaller than a. So H has a small independence number
but it might contain some short cycles.

Explain how to modify the graph H to obtain a graph H 1 with no cycles of length at most l,
αpH 1q ă a and |V pH 1q| ě n{2.

5) (1 point) Show that the graph H 1 has no cycle of length at most l and chromatic number at least
k.

Remark: All subquestions in this exercise can be solved independently from each other (by using the
results of the other questions as black box).

If you have difficulties with this exercise please use the forum or ask your tutors to get help.

Solution:

We first fix the parameters k and l and then do the following steps to find a graph which has chromatic
number larger than k and does not have cycles shorter than l. Note that k and l cannot be a function of
the number of nodes as n is chosen sufficiently large in many the following steps where the sufficiently
large depends on k and l.
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1) Every color class of a valid coloring forms an independent set. Thus no color class can contain

more than αpGq nodes which implies that there have to be at least |V pGq|
αpGq color classes.

2) The probability that a given set of a nodes forms an independent set is p1 ´ pqp
a
2q. By a union

bound we obtain

PrrαpGq ě as “ PrrDW Ď V,W independent set, |W | ě as (1)

“ PrrDW Ď V,W independent set, |W | “ as (2)

ď
ÿ

WĎV,|W |“a

PrrW is an independent sets (3)

ď

ˆ

n

a

˙

p1´ pqp
a
2q (4)

ď nae´papa´1q{2 (5)

ď nan´3pa´1q{2 ÝÑnÑ8 0. (6)

3) If we choose j specific nodes the probability that they form a cycle is pj . The number of potential
cycles of length j is certainly at most nj . With the linearity of expectation we obtain.

ErXs ď
l
ÿ

j“3

njpj “
l
ÿ

j“3

n
1
2l
j
˚

ď
n

l
2l

1´ n´
1
2l

“
n

1
2

1´ n´
1
2l

. (7)

To show inequality p˚q we used the geometric series formula twice and then reduced the fraction

by n
1
2l . For n large enough this is smaller than n

4 (here we get a dependence of n on l).

4) The graph H has at most n{2 cycles of length at most l and independence number αpHq ă a. We
obtain H 1 by removing one node from each of these cycles. Removing a node from a graph can not
increase the independence number. Then the graph H 1 has at least n{2 nodes, no cycles shorter
than l and independence number αpH 1q ă a.

5) The graph H 1 has the following chromatic number.

χpH 1q ě
|V pH 1q|

αpH 1q
ě

n{2

3n1´
1
2l lnn

“
n

1
2l

6 lnn
. (8)

If we chose n sufficiently large we obtain χpH 1q ą k (here we get that n depends on k).

The above proof was a probabilistic proof which shows that such graphs exist. However, it is very
hard to actually construct any of these graphs.

5



Bonus Question: Special Promotion at Christmas! (10* points)

To increase its Christmas sales a small kiosk has a special promotion: If a customer buys two articles
whose prices add up to a value which ends with 11, 33, 55, 77 or 99 cents, he will receive a voucher,
worth the corresponding cent value.

Devise an algorithm which computes an optimal strategy for buying a given collection of goods (here
only the price of a good matters).

Solution:

Assume that you want to buy n items which are given by the set X. We reduce the problem to an
instance of maximum weighted bipartite matching. We create a bipartite graph G “ pX1 Y X2, Eq
where one side of the nodes is formed by all nodes which have an odd cent value, i.e.,

X1 “ tx P X|the cent value of x is oddu, (9)

and the other side is formed by all nodes which have an even cent value, i.e.,

X2 “ tx P X|the cent value of x is evenu. (10)

We add an edge between x P X1 and y P X2 with value t P t11, 33, 55, 77, 99u if and only if the cent
values of x and y add up to t.

Now, finding a maximum bipartite matching in this graph is equivalent to grouping X into groups of
two elements w.r.t. maximizing the value of vouchers one obtains. (one can be more specific here, but
we do not expect it in this bonus question)

The maximum weighted bipartite matching was solved in the lecture which we use as a black box.
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